Mathematics
 Higher level
 Paper 3 - sets, relations and groups

Wednesday 18 May 2016 (morning)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 19]

The following Cayley table for the binary operation multiplication modulo 9 , denoted by $*$, is defined on the set $S=\{1,2,4,5,7,8\}$.

$*$	1	2	4	5	7	8
1	1	2	4	5	7	8
2	2	4	8	1	5	7
4	4	8				
5	5	1				
7	7	5				
8	8	7				

(a) Copy and complete the table.
(b) Show that $\{S, *\}$ is an Abelian group.
(c) Determine the orders of all the elements of $\{S, *\}$.
(d) (i) Find the two proper subgroups of $\{S, *\}$.
(ii) Find the coset of each of these subgroups with respect to the element 5 .
(e) Solve the equation $2 * x * 4 * x * 4=2$.
2. [Maximum mark: 12]

The relation R is defined on \mathbb{Z}^{+}such that $a R b$ if and only if $b^{n}-a^{n} \equiv 0(\bmod p)$ where n, p are fixed positive integers greater than 1 .
(a) Show that R is an equivalence relation.
(b) Given that $n=2$ and $p=7$, determine the first four members of each of the four equivalence classes of R.
3. [Maximum mark: 7]

The group $\{G, *\}$ is Abelian and the bijection $f: G \rightarrow G$ is defined by $f(x)=x^{-1}, x \in G$. Show that f is an isomorphism.
4. [Maximum mark: 13]

The function f is defined by $f: \mathbb{R}^{+} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+} \times \mathbb{R}^{+}$where $f(x, y)=\left(\sqrt{x y}, \frac{x}{y}\right)$.
(a) Prove that f is an injection.
(b) (i) Prove that f is a surjection.
(ii) Hence, or otherwise, write down the inverse function f^{-1}.
5. [Maximum mark: 9]

The group $\{G, *\}$ is defined on the set G with binary operation *. H is a subset of G defined by $H=\left\{x: x \in G, a * x * a^{-1}=x\right.$ for all $\left.a \in G\right\}$. Prove that $\{H, *\}$ is a subgroup of $\{G, *\}$.

